3.195 \(\int \frac{\sec ^{\frac{5}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=136 \[ -\frac{\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{a d}-\frac{\sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{d (a \sec (c+d x)+a)}+\frac{3 \sin (c+d x) \sqrt{\sec (c+d x)}}{a d}-\frac{3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

[Out]

(-3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - (Sqrt[Cos[c + d*x]]*EllipticF[(c
+ d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) + (3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*d) - (Sec[c + d*x]^(3/2)*Sin[c
 + d*x])/(d*(a + a*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.112525, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3818, 3787, 3771, 2641, 3768, 2639} \[ -\frac{\sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{d (a \sec (c+d x)+a)}+\frac{3 \sin (c+d x) \sqrt{\sec (c+d x)}}{a d}-\frac{\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)/(a + a*Sec[c + d*x]),x]

[Out]

(-3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - (Sqrt[Cos[c + d*x]]*EllipticF[(c
+ d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) + (3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*d) - (Sec[c + d*x]^(3/2)*Sin[c
 + d*x])/(d*(a + a*Sec[c + d*x]))

Rule 3818

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(d^2*Cot[e
+ f*x]*(d*Csc[e + f*x])^(n - 2))/(f*(a + b*Csc[e + f*x])), x] - Dist[d^2/(a*b), Int[(d*Csc[e + f*x])^(n - 2)*(
b*(n - 2) - a*(n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sec ^{\frac{5}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx &=-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac{\int \sqrt{\sec (c+d x)} \left (\frac{a}{2}-\frac{3}{2} a \sec (c+d x)\right ) \, dx}{a^2}\\ &=-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac{\int \sqrt{\sec (c+d x)} \, dx}{2 a}+\frac{3 \int \sec ^{\frac{3}{2}}(c+d x) \, dx}{2 a}\\ &=\frac{3 \sqrt{\sec (c+d x)} \sin (c+d x)}{a d}-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac{3 \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{2 a}-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 a}\\ &=-\frac{\sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a d}+\frac{3 \sqrt{\sec (c+d x)} \sin (c+d x)}{a d}-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac{\left (3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{2 a}\\ &=-\frac{3 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a d}-\frac{\sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a d}+\frac{3 \sqrt{\sec (c+d x)} \sin (c+d x)}{a d}-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}\\ \end{align*}

Mathematica [C]  time = 2.00561, size = 262, normalized size = 1.93 \[ \frac{\cos ^2\left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \left (\frac{\sqrt{\sec (c+d x)} \left (6 \csc (c) \cos (d x)-2 \tan \left (\frac{1}{2} (c+d x)\right )\right )}{d}-\frac{2 i \sqrt{2} e^{-i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (3 \left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )-\left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+3 \left (1+e^{2 i (c+d x)}\right )\right )}{\left (-1+e^{2 i c}\right ) d}\right )}{a (\sec (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(5/2)/(a + a*Sec[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]^2*Sec[c + d*x]*(((-2*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*(3*(1 + E^((
2*I)*(c + d*x))) + 3*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2
*I)*(c + d*x))] - E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2,
 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))) + (Sqrt[Sec[c + d*x]]*(6*Cos[d*x]*Csc[c]
- 2*Tan[(c + d*x)/2]))/d))/(a*(1 + Sec[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 1.535, size = 253, normalized size = 1.9 \begin{align*} -{\frac{1}{ad} \left ( -\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1} \left ({\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -3\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) +6\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-5\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c)),x)

[Out]

-(-cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin
(1/2*d*x+1/2*c)^2-1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+6*(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-5*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*
x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1
/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{5}{2}}}{a \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(5/2)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sec \left (d x + c\right )^{\frac{5}{2}}}{a \sec \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral(sec(d*x + c)^(5/2)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)/(a+a*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{5}{2}}}{a \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/(a*sec(d*x + c) + a), x)